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Abstract 
 

This paper presents the circumferential Tungsten Inert Gas (TIG) welding of fixed aluminum pipe.  The 
research is conducted for welding of aluminum alloy Al6063S-T5 with square-wave AC welding polarity 
and CCD camera to monitor backside molten pool. Image processing algorithm is developed to recognize 
image parameters of molten pool. Neural network model is utilized to control the welding penetration by 
modifying speed as welding parameter. The utilized neural network model is 6 units of input layer, 7 units 
of hidden layer, and 1 unit of output layer. The output of neural network is the difference of welding speed 
to obtain uniform weld bead over the entire circumference of the pipe. By controlling welding speed the 
back bead width of aluminum pipe are in the permitted range.  
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1. Introduction 
T

T

ungsten Inert Gas (TIG) arc welding process is widely used in the industries for circumferentially 
butt-welded pipes and welding aluminum alloys. However, arc welding process are nonlinear and 
multivariable-coupled because it involves many uncertainties, such as, influences of metallurgy, heat 
transfer, chemical reaction, arc physics, and magnetization. So that, the weld seam accuracy is difficult 
to be controlled due to the non-linearity and uncertainties of the process. Moreover, it is difficult to 
weld thin aluminum alloy pipe in fixed position while the welding torch moves circumferentially 
along the pipe. If the constant welding conditions are maintained over the full joint length, the bead 
width becomes wider as the circumferential welding of small diameter pipes progresses. As a result, it 
is important to control welding process in real time. 

In the previous researches, welding processes have been conducted by rotating aluminum pipe and 
welding torch was kept static [1-4]. The theoretical and experimental study of heat flow during 
welding of pipes with seam and girth welding method was carried out [1], which confirmed that under 
a constant heat input and welding speed, the size of the fusion zone remains unchanged in seam 
welding but continues to increase in girth welding of pipes with small diameters. The other researches 
are the study on parameter optimization in the circumferential GTA welding of aluminum pipes with 
numerical heat conduction model [2], and semi-analytical finite-element method [3]. Another 
mathematical method for the determination of the optimum heat input condition to control the 
temperature field was also conducted [4], which the algorithm was also applied to a circumferential 
aluminum pipe welding with GTA. The experiment using the image sensing to control the TIG weld 
width for aluminum alloy plate was conducted with the algorithm of image processing and pattern 
recognition of molten pool’s edge [5]. The visual sensing system is analyzed from the point of the 
view of light intensity and recovers the shape and height of the weld pool by SFS (shape from 
shading) algorithm from the welding pool image [6]. 

he excessive arc current yields melt down of metals; in contrary, insufficient arc current produces 
imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire 
circumference of the pipe, the welding conditions should be controlled as the welding process 
proceeds. The purpose of the study is to investigate circumferential welding process of fixed 
aluminum alloy pipe A6063S-T5 using vision sensing to control welding penetration by neural 
network by modifying speed as welding parameter. 
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2. Experimental Device and Method of Study 
 
The experimental device, which is used in this experiment, is shown in Fig.1. The overall system uses 
the circumferential welding system, CCD camera and the image digitizer to acquire of molten pool 
image, the personal computer which processes image and controls, two stepping motors which are 
used for the revolution and longitudinal movement of the welding torch, the small-sized stepping 
motor which is used for arc length control, arc current measurement equipment, the gearbox, and the 
TIG welding machine of AC square-wave current. 
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Fig.1 Experimental device 

 

 
Table 1  Material properties and welding conditions  

Base metal Al-6063S-T5 
Diameter of pipe (mm) 37.8 
Thickness of pipe (mm) 2.0 
Density (g/cm3) 2.69 
Melting point (oC) 615-655 
Thermal conductivity 
(W/m.K at 25oC) 

209 

Welding machine AC 
Electrode 2% Th-W 

(∅ 2.4 mm) 
Nominal arc length (mm) 1.5 
Welding current, I (A) 50 ~ 90 
Welding speed, v (cm/min) 7 ~ 20 
Shielding gas, q (l/min) 8 ~ 15 
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Fig.2. Method of study 
 
The material properties and welding conditions of this study are shown in Table 1. Method of study is 
shown in Fig.2. First, the image processing algorithm is designed by considering the image 
characteristics of molten pool. After several test from the sample image, then the next step is welding 
the pipe without controlling the welding parameter. The purpose of this step is to collect the data of 
image parameters, which are: image width (W), image length (L), and image area (A), with the 
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complement of angle (θ), arc current (I) and welding speed (v). With several combination of welding 
speed, the data are composed and ready to be processed into neural network training. The learning data 
will be trained into two parts, which are: training data and test data with the percentage of 90% and 
10%, respectively. Finally, after several times iteration, and to find the better error value, then the 
weight of neural network can be obtained. This weight values will be used to control welding process. 
Finally, the result of control welding will be measured and analyzed. 

 
3. Experimental Without Control 
T

F

       

he experiment without control is conducted to obtain the data that used as input of neural network 
training process. The combination of several welding speed ranges from 9 – 17 cm/min has been 
conducted to obtain the parameters of welding torch rotation angle (θ), welding speed (v), arc current 
(I), image width (W), image length (L), and image area (A), back bead width (b). 

In this experiment, the current pattern is symmetrical square-wave AC current. The first step of 
welding process is the welding torch is kept steady at the 0o for several time. In this case, the waiting 
time to make sure the penetration of aluminum pipe occurs is 25 s. Then the torch rotates along the 
pipe until reaching 360o. Fig.3 – Fig.5 shows the results of experiment without control conducted at I 
= 70 A, frequency of 50 Hz, with different welding speed, Fig.3 with v = 9 cm/min, Fig.4 with v = 12 
cm/min, and Fig.5 with v = 15 cm/min. From that results, the lower welding speed the higher top and 
back bead width. Moreover, the lower welding speed yields the unstable bead width. In this 
experiment, the tolerance of back bead width to be used for input data of control system ranges from 4 
– 6 mm, with the target of 5 mm. 

ig.6 shows the relation between back bead width and width of molten pool, W. Although the 
distribution of back bead width and W are not fit each other, but the tendency of the graph seems to be 
same. 
 
 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

5

6

7

8

9

0 90 180 270 360

Rotational angle [°]

W
i
d
t
h
 
[
m

�Ÿ�@Top bead width
�¡�@Back bead width

0

1

2

3

4

5

6

7

0 90 180 270 360

Rotational angle [°]

W
i
d
t
h
 
[
m

�Ÿ�@Top bead width
�¡�@Back bead width

Fig.3 v = 9 cm/min, I = 70A    Fig.4 v = 12 cm/min, I = 70A 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

5

6

7

8

0 90 180 270 360

Rotational angle [°]

W
i
d
t
h
 
[
m

�Ÿ�@Top bead width
�¡�@Back bead width

0

10

20

30

40

50

60

70

80

90

0 90 180 270 360

Rotational angle [°]

W
i
d
t
h
 
o
f
 
m
o
l
t
e
n
 
p
o

0

1

2

3

4

5

6

7

8

9

B
a
c
k
 
b
e
a
d
 
w
i
d
t
h
 

�Ÿ�@Back bead width
�¡�@Width of molten pool

Fig.5 v = 15 cm/min, I = 70A     Fig.6 Relation between back bead bead with  
                                                            and width of molten pool (v = 9 cm/min, I = 70A) 

 
 

M3-006/3 



Seminar Nasional Tahunan Teknik Mesin (SNTTM) V 
Universitas Indonesia, 21-23 November 2006 

4. Training of Neural Network  
A

T

F

 multilayer feedforward network is an important class of neural networks that typically consists of a 
set of sensory units of source nodes that constitute the input layer, one or more hidden layers of 
computation nodes, and an output layer of computation nodes. The input signal propagates through the 
network in a forward direction, on a layer by-layer basis. These neural networks are commonly 
referred to as multilayer perceptrons (MLPs), which represent a generalization of the single-layer 
perceptrons. Multilayer perceptrons have been applied successfully to solve some difficult and diverse 
problems by training them in a supervised manner with a highly popular algorithm known as the errors 
back-propagation algorithm. This algorithm is based on the error-correction learning rule.  

he error back-propagation process consists of two passes through the different layers of the network: 
a forward pass and backward pass. In the forward pass, an activity pattern of input vector is applied to 
the sensory nodes of the network, and its effect propagates through the network, layer by layer. Then, 
a set of outputs is produced as the actual response of the network. During the forward pass the 
synaptic weights of the network are all fixed. During the backward pass, the synaptic weights are all 
adjusted in accordance with the error-correction rule. The actual response of the network is subtracted 
from a target response to produce an error signal. This error signal is the propagated backward 
through the network, against the direction of synaptic connections. This process then named as “error 
back-propagation.” The synaptic weights are adjusted so as to make the actual response of the network 
move closer to the desired response. The error back-propagation algorithm is also referred to in the 
literature as the back-propagation algorithm (back-prop). The learning process performed with the 
algorithm is called back-propagation learning.[7] 

ig.7 presents the neural network model used in this research. The model uses back-propagation 
algorithm with three layers structure consists of six units in the input layer, seven units in the hidden 
layer, and one unit in the output layer.  
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Fig.7 Neural network model       Fig.8 Training error of neural network configuration:  
                   6 input units – 7 hidden units – 1 output unit 
 

In this process, the good structure of neural network will be examined with the given training data. 
The preliminary training process was conducted for different hidden layer. The combination of 6 units 
input layer, 5 – 8 units hidden layer, and 1 unit output layer were examined. The value of momentum 
is 0.75, the learning rate is 0.05, iteration is 105, the training data is 294, and the testing data is 34 as 
10% from the training data are selected randomly. The resume of training and test error is shown in 
Table 2. Because the training and test error of 6 input – 7 hidden – 1 output are lowest than the other 
configuration, so this structure is selected as the neural network model. Finally, by applying the 
configuration with 106 iteration and the same training condition, the weight of neural network can be 
obtained. The results of training error are shown in Fig.8. 
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Table 2. Training results of neural network 
Input 
layer 
(unit) 

Hidden 
layer   
(unit) 

Output 
layer     
(unit) 

Iteration Training 
data 

Test 
data 

Training 
error 

Test 
error 

6 5 1 100,000 294 34 0.094312 0.146186 

6 6 1  100,000  294 34 0.102220 0.120318 

6 7 1  100,000  294 34 0.090779 0.109966 

6 8 1  100,000  294 34 0.092342 0.131322 

 
5. Results and Discussion 

To produce stable arc condition, the welding speed at 0o – 45o is made constant. In this case, the 
given welding speed is 12 cm/min. For controlled welding process, appearance of top and back 
welding bead are shown in Fig. 9 and 10, respectively. The top and back bead width is shown in Fig. 
11. The top bead width is constant along the rotation progresses. The back bead width tends to stable 
from 0o – 180o. Then, it decreases to about 270o and rises to the width of about 6 mm due to the change 
of welding speed. From the welding results, back bead width tends to stable condition from 0o – 180o. 
Then, it decreases to about 270o and rises to the width of about 6 mm. From this experiment, the target 
back bead width of 5 mm is in the permitted  range of 5±1 mm with the standard deviation of 0.53 
mm. 
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9 Back bead appearance  Fig.10 Top bead appearance 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.11 Top and back back width    Fig.12 Top bead appearance 

The welding speed tends to increase from 45o until the range of 180o – 270o as shown in Fig. 12. 
Then it decreases to about 270o and finally rises until the end of rotation angle. At the end of 360o, the 
welding speed values are saturated at 20 cm/min. This condition probably caused by insufficient 
training data, error of image processing, error of motor control, and time delay problems.  
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6. Conclusions 
1. The circumferential TIG welding using vision sensing to control welding penetratrion is 

constructed. The workpiece material is aluminum alloy pipe A6063S-T5, and welded in fixed 
position and moving welding torch.  

2. The neural network as control model was developed. Six parameters of image parameters of 
molten pool: width (W), length (L) and area (A), rotation angle (θ), welding speed (v) and welding 
current (I), are the input for training process which outputs the modified welding speed, Δv. 

3. The utilized neural network model is back-propagation algorithm with 6 units of input layer, 7 
units of hidden layer, and 1 unit of output layer. 

4. The result of experiment with control shows that the back bead width is in the range of 5±1 mm 
with the standard deviation of 0.53 mm. 
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