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ABSTRACT

This research deals a stability investigation of anisotropic rotor with different shaft orientation which 
supported by anisotropic flexible bearings. In case of an anisotropic rotor has the difference in the shaft 
orientation, in which the direction of the principal axis of the shaft cross-section in the left shaft end is 
different from the direction in the right shaft end. The rotor is approached by using the minimal number of 
discrete model. The effects of the gyroscopic moments come not only from the difference in the shaft 
orientation, but also from the asymmetry position of the disk on the shaft and the difference of bearing 
stiffness. Because the anisotropic rotor is supported by anisotropic flexible bearings, the system stiffness 
must be a time-variant parameter whether the rotor is modelled in a fixed or in a rotating reference frame. 
The stability charts of the anisotropic rotor supported by anisotropic flexible bearings are analyzed by 
using the Floquet’s theory. Comparing to the rotor which has the same parameters but is supported by 
rigid bearings, while the stability chart of the rotor supported by rigid bearings has only a single region of 
instability in the whole varying coefficients of the element anisotropy, the rotor in flexible bearings has 
three separated intervals of instabilities at lower values of the element anisotropy.

Keywords: anisotropic rotor, shaft orientation, anisotropic flexible bearings, rotor stability, Floquet’s 
theory

1. Introduction 
An anisotropic rotor system can be modelled both in 

a fixed and in a rotating reference frames. In a fixed 
reference frame, the dynamic parameter especially the 
shaft stiffness is time-variant. If the rotor is modelled in 
a rotating reference frame, where the coordinate system 
follows the rotation of the shaft, then the differential 
equations of the system become speed-dependent. 
Hence, at constant rotational speed, the dynamic 
parameters of the rotor can be considered constant. If an 
anisotropic rotor is supported by anisotropic flexible 
bearings, the system stiffness must be a time-variant 
parameter whether the rotor is modelled in a fixed or in 
a rotating reference frame. Thus, the mathematical 
model is more complicated. The effects of the 
gyroscopic moments are influenced not only by the 
difference in the shaft orientation but also from
asymmetry position of the disk on the shaft and the 
difference of bearing stiffness. 

According to the previous researches about 
anisotropic rotor in anisotropic bearings, various papers 

have been published. Hull [1] conducted experiments 
and showed the forward and backward whirl motion of 
anisotropic rotors which are supported by flexible 
anisotropic bearings. Iwatsubo et al [2] concerned with 
the vibrations of an asymmetric simple rotor supported 
by asymmetric bearings. The effects of asymmetry of the 
rotor and the bearing stiffness have been analyzed. 
However, some parameters in the model like the 
eccentricity of the rotor, the acceleration of gravity, the 
effects of rotary inertia, gyroscopic moments, and shear 
deformation were neglected. 

Furthermore, the stability of rotors modelled by 
discrete elements has been also investigated. Oncescu et 
al [3] formulated a set of ordinary differential equations 
with periodic coefficients by using finite element 
method in conjunction with a time-transfer matrix 
method based on Floquet's theory. In their model, the 
shaft cross-section is asymmetric, having different 
principal moments of inertia and varied step-by-step 
along the longitudinal axis. However, the principal 
directions of inertia of the cross-section are uniform 
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along the shaft. By taking into account of the shear 
deformation in the rotor model (i.e. Timoshenko beam), 
Chen and Peng [4] and also Boru and Irretier [5] have 
analyzed the stability of the rotor based using the finite 
element method. However, none of the researchers 
above studied about anisotropic rotor with different shaft 
orientation. An anisotropic rotor with different shaft 
orientation has been introduced by Malta [6]. In that
paper, the rotor is approached by using the minimal 
number of discrete model. The effects of the gyroscopic 
moments come not only from the difference in the shaft 
orientation, but also from the asymmetry position of the 
disk on the shaft. In the analyses, the rotor stability is 
considered at constant angular velocity. However, the 
rotor model is supported only by rigid bearings, in which 
the stability areas can be determined directly through the 
analyses of eigenvalues. 

The present research is developed based on the 
reference [6] for anisotropic rotor case which is 
supported by anisotropic flexible bearings, in which the 
system is time-variant. One method which can solve 
such equation is the Floquet’s theory [7], [8], [9].

2. System Modelling 
The system is investigated as an anisotropic rotor 

supported by anisotropic flexible bearings as shown in 
Fig. 1. In this case, besides the anisotropy in each 
bearing, it is possible that the deflections between the 
left and the right bearing are different. Therefore, the 
effect of gyroscopic moments can be increased or 
decreased.

Figure 1 Anisotropic rotor with difference shaft 
orientation supported by anisotropic flexible bearings

Based on the Fig. 2, if the rotor is assumed that has 
the minimal number of discrete elements (i.e. shaft with 
two elements only) the subscribe k has a value 1 or 2. 
Furthermore, the coordinate systems of the principal 
axes of the first and the second shaft element are placed 
on the *

1 - *
1 - plane inclined at an angle 1 and the 

*
2 - *

2 - plane at angle 2 . The centre of gravity S of the 

disk is eccentric to the centre of the shaft W and its 
position being defined by the eccentricity  and the 
angular position . The left and the right shaft ends are 
denoted as 1L and 2L , respectively.

Figure 2 Coordinate system of anisotropic rotor
supported by anisotropic flexible bearings

Furthermore, as shown in Fig. 3, the disk on the
shaft is described in the coordinate system (x', y', z'), 
where the plane of disk is parallel to the y'-z'-plane. The 
x'-axis is perpendicular to that plane. Furthermore, y'-
axis can move only in the x-y-plane and z'-axis in the x-
z-plane, therefore y'-axis and z'-axis can be not-
perpendicular, where their position can make 
precessions z and y , respectively. This means the 
coordinate system (x', y', z') is no longer orthonormal.
Because the rotor system is supported by anisotropic 
flexible bearings, the precessions y and z occur not 
only due to the slope of the shaft at deflection in the left 
and in the right bearings, but also by slope of the 
deflected shaft, hence

LW yyy      and    
LW zzz   (1)

where 
Wy and 

Wz are the slopes of the disk due to the 
axis of the shaft in undeflected condition in the x-z and 
x-y-plane, respectively (i.e. the precessions are occurred
only by shaft deflection). The

Ly and
Lz are the 

precessions that come from the slope of the shaft due to 
the deflection in the left and the right bearing.

From the Fig. 3, the transformation equations of 
basis vectors are obtained
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Further, the kinematics relationships of angular 
velocities in (x', y', z')-coordinate system are determined. 
If angular speed of the disk is denoted by S in the (x', 
y', z')-coordinate system, the y'-z'-plane that rotates 
along the x'-axis is denoted by E and  is the 
rotational speed of the shaft, then

.'xES e


  (3)

(a)

(b)

Figure 3 Coordinate of disk in anisotropic
rotor-bearings system

Furthermore, angular speed of basis vectors 'ye


and 

'ze


are

        '''''''''' zyzyyyxyxy eeeeeee











  (4)

and

        '''''''''' zzzyzyxzxz eeeeeee











  , (5)

respectively. Note that, the expression in parenthesis is 
not a function argument but an alternative index. For an
example, the   ''' xyx ee


 means the rotational speed of 

the vector 'xe


due to y'-axis. Because the plane of disk is 
placed at the y'-z'-plane and the precession z is the 
angle of the plane of disk with respect to the z-axis, 
hence

  zzy ee





 ' . (6)

Similar to the Eq. (6), the precession y is the 
angle of the plane of disk with respect to the y-axis, 
hence

  yyz ee





 ' . (7)

By using the Cramer’s rule, angular speed  '' yx e


 , 
 '' yy e


 ,  '' yz e


 ,  '' zx e


 ,  '' zy e


 and  '' zz e


 of the 
basis vectors can be determined. Based on the Figure 3, 
it is clear that the angular speed of the y'-z'-plane is the 
rotational speed of the vector 'ye

 due to z'-axis and the 
rotational speed of the vector 'ze

 due to y'-axis, hence 
the angular speed in Eq. (3) can be reformulated as

    '''''' zyzyzyE eeee





   . (8)

By inserting the basis vectors of the results of the 
Cramer’s rule and the Eq. (8) into the Eq. (3), the S
can be reformulated. Furthermore, the vector of angular 
momentum can be calculated

SL  . (9)

If the precessions z and y are assumed to be 
small then

    yyazpxp eeL





  

        zzayp e


   . (10)

The time derivative of angular momentum in 
rotating reference frame can be rewritten as
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      


  2
pxp e

dt
dL

             ea


  22

               2
p

             ea


  22 (11)

3. Dynamic Parameters
In an anisotropic rotor supported by anisotropic 

flexible bearings, the system has eight degrees of 
freedom (DoF) as shown in Fig. 4. Four degrees of 
freedom come from a node, where a disk is attached and 
the others come from the motions of bearings. Based on 
the Fig. 3, the kinematic relationship in rotating 
reference frame can be determined. Therefore, the 
translational and rotational displacements of the bearings 
are obtained as follows

21

12
LLL 








 , (12)

21

12
LLL 








 , (13)

 
21

1
LLL

 


, (14)

 
21

1
LLL

 


. (15)

Figure 4 Rotor model 8-DoF with the minimal 
number of discrete elements

3.1 Flexibility and Damping Matrices
Derivation of equations of the rotor supported by 

anisotropic flexible bearings is more complicated than 
the rotor supported by rigid bearings. The differential 
equations must be considered not only in the shaft 
system but also in the bearing system. Considering of 
the shaft stiffness in anisotropic flexible bearings is 
analogue to the shaft stiffness of the rotor supported by 
rigid bearings (see Ref. [6]). The internal forces in the 

shaft are equal to the multiplication of shaft stiffness and 
relative displacement of the disk, hence
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Using Eqs. 12-15, give
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or rewrite in simple form

       LWWWk qKqKf
L

 (18)

Analogue to the above shaft stiffness, the internal 
damping forces can be determined
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Using the time derivative of Eqs. 12-15, give
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or rewrite in simple form
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       LiWii qDqDf
LL
  (21)

Because the external damping forces are formulated by 
proportional damping corresponding to the absolute 
velocity of the disk, there is no difference of formulation 
of the equation for anisotropic rotor supported by 
anisotropic flexible bearings, hence

 ySzSaa eyezdF





  (22)

or in rotating reference frame due to centre of shaft W, 
the equation can be formulated as

 
  







e

edF

WW

WWaa







cos

sin




(23)

where ad is coefficient of proportional external damping.
In simple matrix form, the Eq. (23) can be rearranged as

         aWaWaa pqKqDf   , (24)

3.2 Equations in Bearing System
The reaction force for supporting the left side of the 

rotor in  -direction is

   









4411

12
5 ikik MMFFF



 , (25)

and in  -direction

   









3322

12
6 ikik MMFFF




. (26)

The reaction force for supporting the right side of the 
rotor in  -direction is

   




 
4411

11
7 ikik MMFFF




(27)

and in  -direction

   




 
3322

11
8 ikik MMFFF




. (28)

If a force vector is introduced

   TL FFFFf
W 8765 ,,, (29)

or in simple form of matrix notation

            
  LL

W
T

WLLW
T

iL

qK

qKqDqDf

L

LLLW



 
. (30)

Equations in bearing system are

    yLyLyzLzLzL eykydezkzdF






11111 1111 

    yLyLyzLzLzL eykydezkzdF






22222 2222 

(31)

where all forces are performed in fixed reference frame, 
whereas the shaft stiffness is performed in rotating 
reference frame. Therefore, the equations in the bearings 
should be transformed into rotating reference frame,
hence the equations of the reaction damping forces in the 
bearings are obtained and written in simple form of 
matrix notation

       LdLdd qKqDf
LLL

  (32)

and

    LLk qKf
L

 (33)

Now, the equations in the bearing system can be 
determined to

        
LLW kdLLL fffqM  (34)

3.3 Equations in Rotor System
The differential equations of translatory inertia (i.e. 

in the  and  -directions) in the rotating coordinate 
system can be determined by using 2nd Newton’s Law, 
hence
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
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222111

2

2

2

2

(35)

Note that, the Eq. (35) is still defined in the centre of 
gravity of the disk. In simple matrix notation, Eq. (35) 
can be rearranged as

            TTWTWTWT fpqKqDqM  

(36)

Furthermore, the differential equations of rotary 
inertia (i.e. in the  and  -directions) can be obtained 
by the time derivative of angular momentum in rotating 
reference frame in Eq. (11) and the stiffness matrix of 
shaft especially in the  and  -directions, hence

          GWGWGWG fqKqDqM   (37)
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Finally, the differential equations of rotor motion 
can be obtained as follows

   
 

 
 

         
     

 
 

         
       

 
 

     






 



































































 

0

0
0

gaT

L

W

LdL
T

W

WWaGT

L

W

dL
T

i

iiaGT

L

W

L

GT

ppp

q
q

KKKK
KKKKK

q
q

DDD
DDDDD

q
q

M
MM

LLL

L

LLL

L









(38)

In analysis, the part of  LM in Eq. (38) is usually 
assumped zero, therefore there is a problem if the mass 
matrix is singular. Because of that, the static 
condensation method [10] can be used, where the zero 
part in the diagonal of mass matrix can be eliminated. 

In case of a time-variant system, some methods 
have been developed to solve this problem. One of the 
widely used methods is Floquet’s theory. In this paper, 
the Floquet’s theory is not discussed. For further 
information about this theory can be found in Ref. [10].

Considering of the time-varying system after Eq.
(38) can be conducted numerically, if all parameters in 
the equations are known. Since the matrix of bearing 
mass  LM is zero, the calculation is also possible by 
using the static condensation. Furthermore, the equations 
can be solved by using fourth-order Runge-Kutta 
method. Therefore, the dynamic responses, especially 
the steady-state responses (i.e. the responses are 
assumed after a certain time) can be analyzed in 
frequency domain for example by using fast fourier 
transform (FFT). The responses are analyzed for all spin 
speeds and depicted in a spectral map.

4. Case Study and Discussion
A model of an anisotropic rotor supported by 

anisotropic flexible bearings is presented. A sketch of the 
anisotropic rotor model is shown in Fig. 1. The 
following assumptions are made: the rotor is modelled 
as a massless shaft and a thin rigid disk is attached in the 
centre of the shaft ( 25.021   m) and the 
comparison of the polar mass and axial mass of inertia 
 ap  is 1.98. In order to simplify the differential 
equations of the rotor, the shaft is discretized by two 
discrete elements. Each element has the same dimension 
(i.e. length and rectangular cross section) but has 
different shaft orientations. The difference in the shaft 
orientation is set to  . Because of similarity of the 
resulting stability charts, only the anisotropic rotor with 

o30 will be presented.
In the numerical simulation, the coefficient of the 

element anisotropy W is varied from 0 to 0.8. The 
width b of the rectangular cross section is defined to be 
constant and the thickness h of the cross section is 
formulated as described in the following equation.

W

Wbh







1
1

(39)

The anisotropy in the bearing stiffness is considered 
by using the following formulations

yz

yz
L kk

kk

11

11
1 


   and  

yz

yz
L kk

kk

22

22
2 


 (40)

where zk1 and yk1 are the stiffness parameters of the 
bearings on the left shaft end in z-direction and y-
direction, respectively, and zk2 and yk2 on the right shaft 
end. The bearing stiffness in the z-direction is

7631321  zz kk N/m. In this section, the anisotropic 
rotor with two different anisotropies of the bearing 
stiffness with 3.0

21
 LL  (i.e. 741121  yy kk

N/m) and 0.6 (i.e. 344121  yy kk N/m) is simulated.
Because the equations of motion of the rotor system 

are time-variant, the Floquet theory is applied to obtain 
the stability charts as depicted in Fig. 5 and 6. In the 
figures, the instability areas are shaded as grey area. Due 
to numerical restriction, narrow instability tongues 
between 2/   and 3 cannot be resolved.

The stability chart of the anisotropic rotor supported 
by anisotropic flexible bearings as presented in Fig. 5 is 
compared to the rotor which has the same parameters but 
is supported by rigid bearings in Ref. [6]. While the 
stability chart of the rotor supported by rigid bearings 
has only a single region of instability in the whole 
varying coefficients of the element anisotropy, the rotor 
in flexible bearings has three separated intervals of 
instabilities at lower values of the element anisotropy. 
The anisotropy coefficient of the bearing stiffness affects 
the region where the three separated instability intervals 
emerge to a single interval at higher element anisotropy 
of the shaft. The higher the anisotropy coefficient of the 
bearing stiffness, the three separated regions of 
instabilities reach to higher element anisotropy of the 
shaft. For the anisotropic rotor with the anisotropic 
coefficient of the bearing 
stiffness 3.0

21
 LLL  , the three separated 

regions of instability reach to the element anisotropy 
32.0W of the shaft. For the same rotor with

6.0
21

 LLL  reaches to 56.0W .
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For reference, the first and the second natural 
frequencies of the rotor-bearing system are also plotted 
in Fig. 5 and 6. In this case, the natural frequencies of 
the system are obtained by solving the characteristic 
roots of the homogenous differential equations of motion 
of the rotor according to Eq. (38) after static 
condensation at rotational speed 0 and time 0t . 
At this condition, the first and the second natural 
frequencies of the system differ. Therefore, this system 
is unstable at rotational speed in these natural 
frequencies. Similar to Ref. [9], the second region of the 
instability at vanishing shaft anisotropy 0W is 
located at   2/21   .

Figure 5 Stability charts according to Floquet of various 
coefficients of anisotropy ( 0W to 8.0 ) of 
the undamped anisotropic rotor with single disk 
and the difference o30 in the shaft 
orientation supported by anisotropic flexible 
bearings with 3.0L

Figure 6 Stability charts according to Floquet of 
various coefficients of anisotropy ( 0W
to 8.0 ) of the undamped anisotropic rotor 
with single disk and the difference 

o30 in the shaft orientation supported 
by anisotropic flexible bearings with 

6.0L

Furthermore, the comparisons of dynamic responses 
in the frequency domain are plotted in Figs. 7-10. The 
figures show the responses in frequency domain of the 
rotor for each coefficient of the element anisotropy 

2.0W and 0.5 and supported by anisotropic flexible 
bearings with the coefficient 3.0

21
 LLL  (Fig. 

7 and 8) and with 6.0
21

 LLL  (Fig. 9 and 10). 
It is clear that the instability areas occur if the 
amplitudes of responses are very high either in z-
direction or in y-direction. However, although the 
amplitudes of the weight critical speed (i.e. at 
normalized rotational speed about 0.5 - 0.7) are 
relatively high, but they are not defined as unstable areas 
in the Floquet stability charts. 

Figure 7 Dynamic responses in frequency domain
of the rotor for anisotropy 5.0W supported 
by anisotropic flexible bearings with the 
coefficient  3.0L

Figure 8 Dynamic responses in frequency domain
of the rotor for anisotropy 2.0W supported 
by anisotropic flexible bearings with the 
coefficient  3.0L
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Figure 9 Dynamic responses in frequency domain
of the rotor for anisotropy 5.0W supported by 
anisotropic flexible bearings with the coefficient  

6.0L

Figure 10 Dynamic responses in frequency domain
of the rotor for anisotropy 2.0W supported by 
anisotropic flexible bearings with the coefficient  

6.0L

5. Conclusions
In case of the anisotropic rotor (e.g. with single disk 

and the shaft is discretized by two elements) supported 
by anisotropic flexible bearings, the stability chart shows 
three separated regions of instability especially for the 
lower element shaft anisotropy. With higher bearings 
anisotropy, three separated regions of instability reach to 
a higher element anisotropy of the shaft.
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